Search results for "mitochondrial translation"

showing 2 items of 2 documents

Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis

2019

Summary While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressi…

0301 basic medicineMitochondrial translationmedicine.medical_treatmentT-LymphocytesCellMitochondrionmedicine.disease_causeRibosomemitochondrial translationOxidative PhosphorylationantibioticsAutoimmunityACTIVATIONMice0302 clinical medicineribosome-targetingMedicine and Health SciencesImmunology and AllergyTRANSCRIPTION FACTORMolecular Targeted TherapyMice Knockout0303 health sciencesEffectorExperimental autoimmune encephalomyelitisautoimmunityCell DifferentiationPeptide Elongation Factor GAnti-Bacterial Agents3. Good healthCell biologymitochondriaInfectious DiseasesCytokinemedicine.anatomical_structureRESPIRATION030220 oncology & carcinogenesisEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisT cellImmunologyINHIBITIONT cellsBiologyOXAZOLIDINONEPeptides CyclicArticleMitochondrial Proteins03 medical and health sciencesNAD+medicineAnimalsHumanselongation factor G1030304 developmental biologyAutoimmune diseaseBacteriaLinezolidBiology and Life SciencesPATHWAYSDNANADmedicine.diseaseIn vitroMice Inbred C57BL030104 developmental biologyTh17 CellsArgyrinCHLORAMPHENICOLMEMBRANERibosomesImmunity
researchProduct

Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs.

2021

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced resp…

0303 health sciencesMitochondrial DNAMitochondrial translationRespiratory chainTranslation (biology)[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyCell BiologyMethylationMitochondrionBiologyCell biology03 medical and health sciences0302 clinical medicineMitochondrial respiratory chain[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Mitochondrial ribosomeMettl8 ; Rna Modification ; M(3)c ; Mt-trna ; TranslationMolecular Biology030217 neurology & neurosurgeryComputingMilieux_MISCELLANEOUS030304 developmental biology
researchProduct